8-Ethyl-1-methoxybenzo[d]naphtho[1,2-b] pyran-6-one (4). A mixture of $8(170 \mathrm{mg}, 0.55 \mathrm{mmol})$ and $10 \%$ palladium on carbon ( 170 mg ) was heated at $200^{\circ} \mathrm{C}$ under vacuum for 10 h . During this period the reaction mixture was monitored by thin-layer chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, R_{f}(8)=0.26, R_{f}(4)=0.56\right)$. When the reaction was complete, the crude product was removed from the carbon by successive triturations with hot benzene and chloroform. The combined extract was evaporated to dryness, and the resulting residue was crystallized from cyclohexane-dichloromethane to yield $122 \mathrm{mg}(72 \%)$ of 4 as fine, white needles: $\mathrm{mp} 174^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}$ ) $\delta 1.33\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) 2.81(\mathrm{q}, 2 \mathrm{H}$, benzylic), 4.02 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$ ), $6.79\left(\mathrm{~d}, 1 \mathrm{H}, J_{2.3}=7.6 \mathrm{~Hz}, \mathrm{H}-2\right.$ ), $7.41(\mathrm{dd}, 1 \mathrm{H}$, $\left.J_{3,4}=8.1 \mathrm{~Hz}, \mathrm{H}-3\right) 7.54\left(\mathrm{dd}, 1 \mathrm{H}, J_{9,10}=8.1 \mathrm{~Hz}, J_{7,10}=1.8 \mathrm{~Hz}\right.$, $\mathrm{H}-9), 7.77\left(\mathrm{~d}, 1 \mathrm{H}, J_{11,12}=9.0 \mathrm{~Hz}, \mathrm{H}-11\right), 7.89(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-10), 7.96$ (d $1 \mathrm{H}, \mathrm{H}-12$ ), 7.98 (d, $1 \mathrm{H}, \mathrm{H}-4$ ), 8.14 (d, $1 \mathrm{H}, \mathrm{H}-7$ ); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 15.08\left(\mathrm{CH}_{3}\right), 28.51$ (benzylic), $55.49\left(\mathrm{OCH}_{3}\right), 105.55(\mathrm{C}-2)$, 113.46, 114.06 (C-4), 118.01, 118.34 (C-11, C-12), 120.94, 122.02 (C-3), 124.67, 125.76, 127.00 (C-10), 128.87 (C-7), 132.80, 134.80 (C-9), 144.93, 146.34, 155.07 (C-1), $161.30(\mathrm{C}=0$ ). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{3}: \mathrm{C}, 78.93 ; \mathrm{H}, 5.30$. Found: $\mathrm{C}, 78.71 ; \mathrm{H}, 5.29$.
8-Ethyl-1-methoxy-4-( $2^{\prime}, 3^{\prime}, 5^{\prime}$-tri- $O$-acetyl- $\beta$-D-ribo-furanosyl)benzo[d]naphtho[1,2-b]pyran-6-one (1) and 8-Ethyl-1-methoxy-4-( $2^{\prime}, 3^{\prime}, 5^{\prime}$-tri- $O$-acetyl- $\alpha$-D-ribofuranosyl)-benzo[d]naphtho[1,2-b] pyran-6-one (2). To a stirred solution of $4(600 \mathrm{mg}, 1.97 \mathrm{mmol})$ and $1,2,3,5$-tetra- $O$-acetyl $-\beta$-D-ribofuranose ${ }^{11}$ (3) ( $628 \mathrm{mg}, 1.97 \mathrm{mmol}$ ) in 40 mL of dichloroethane was added stannic chloride ( $0.7 \mathrm{~mL}, 6 \mathrm{mmol}$ ). After 24 h at room temperature, the reaction mixture was poured into an aqueous sodium bicarbonate solution. The organic phase was separated and washed with water. The extract was dried (sodium sulfate), and the solvent was evaporated; the resulting residue was separated by preparative thin-layer chromatography (dichloro-methane-ether, 14:1). Unreacted 4 ( $145 \mathrm{mg}, 23 \%$ ), $351 \mathrm{mg}(32 \%)$ of 2 , off-white crystals ( $\mathrm{mp} 200^{\circ} \mathrm{C}$ ), and $315 \mathrm{mg}(29 \%)$ of 1 , off-white crystals ( $\mathrm{mp} 193^{\circ} \mathrm{C}$ ), were obtained. For 1: MS, $m / z$ $562\left(1.6 \%, \mathrm{M}^{\bullet+}\right), 383\left(100 \%, \mathrm{M}^{++}-2 \mathrm{AcOH}-\mathrm{OAc}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.29\left(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.97,2.19,2.29(3 \mathrm{~s}, 9$ H , acetyl), 2.76 (q, 2 H , benzylic), 4.00 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$ ), 4.46 (dd, $\left.1 \mathrm{H}, J=12.2 \mathrm{~Hz}, J=5.0 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 4.53(\mathrm{dd}, 1 \mathrm{H}, J=2.6 \mathrm{~Hz}$, $\left.\mathrm{H}-5^{\prime}\right), 4.56$ (ddd, $1 \mathrm{H}, J_{4^{\prime}, 3^{\prime}}=9.5 \mathrm{~Hz}, J_{4^{\prime}, 5^{\prime}}=2.6 \mathrm{~Hz}, J_{4^{\prime}, 5^{\prime}}=5.0 \mathrm{~Hz}$, $\left.\mathrm{H}-4^{\prime}\right), 5.16$ (dd, $\left.1 \mathrm{H}, J_{2,3^{\prime}}=4.2 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.59\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 6.58$ (brs, $1 \mathrm{H}, \mathrm{H}-1^{\prime}$ ), 6.86 (d, $1 \mathrm{H}, J_{2,3}=8.4 \mathrm{~Hz}, \mathrm{H}-2$ ), 7.65 (dd, 1 H , $\left.J_{9,10}=8.3 \mathrm{~Hz}, J_{9,7}=1.9 \mathrm{~Hz}, \mathrm{H}-9\right), 8.03\left(\mathrm{~d}, 1 \mathrm{H}, J_{11,12}=9.0 \mathrm{~Hz}\right.$, $\mathrm{H}-11$ ), 8.05 (d, $1 \mathrm{H}, \mathrm{H}-3$ ), 8.09 (d, $1 \mathrm{H}, \mathrm{H}-10$ ), 8.15 (d, $1 \mathrm{H}, \mathrm{H}-7$ ), 8.23 (d, $1 \mathrm{H}, \mathrm{H}-12$ ); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 15.19\left(\mathrm{CH}_{3}\right), 20.50,20.95$, 21.21 (acetyl), 28.56 (benzylic), $55.73\left(\mathrm{OCH}_{3}\right), 63.16$ (C-5'), 69.59 (C-3'), 76.37, 76.47 ( $\mathrm{C}-2^{\prime}, \mathrm{C}-4^{\prime}$ ), 82.60 ( $\mathrm{C}-1^{\prime}$ ), 104.81 (C-2), 115.25 (C-4), 118.79 (C-12), 119.28 (C-11), 120.36 (C-8), 122.01, 122.43 (C-3), 125.62 (C-10), 126.77, 127.28, 128.75 (C-7), 132.80, 135.09 (C-9), 145.42 (C-6a), 147.32 (C-5), 154.97 (C-1), 160.31 (C-6), 169.72, 170.66, 170.76 (acetyl $\mathrm{C}=0$ ). Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{O}_{10}: \mathrm{C}, 66.2$; H, 5.38. Found: C, 66.0; H, 5.14.

For 2: MS, $m / z 562\left(7.1 \%, \mathrm{M}^{+}\right)$, $383\left(100 \%, \mathrm{M}^{++}-2 \mathrm{AcOH}\right.$ - OAc); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.31\left(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.53$, 2.02, 2.17 ( $3 \mathrm{~s}, 9 \mathrm{H}$, acetyl), 2.80 (q, 2 H , benzylic), 4.02 ( $\mathrm{s}, 3 \mathrm{H}$, $\mathrm{OCH}_{3}$ ), $4.34\left(\mathrm{dd}, 1 \mathrm{H}, J_{5^{\prime}, 5^{\prime}}=12.2 \mathrm{~Hz}, J_{5^{\prime}, 4^{\prime}}=5.1 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 4.48-4.52$ (m, 2 H, H-4', H-5 $5^{\prime}$ ), 5.69 (dd, $1 \mathrm{H}, J_{3^{\prime}, 2^{\prime}}=4.8 \mathrm{~Hz}, J_{3^{\prime}, 4^{\prime}}=7.6 \mathrm{~Hz}$, $\mathrm{H}-3^{\prime}$ ), 6.35 (dd, $\left.1 \mathrm{H}, J=3.5 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 6.72$ (d, $1 \mathrm{H}, \mathrm{H}-1^{\prime}$ ), 6.93 (d, $1 \mathrm{H}, J_{3,2}=8.4 \mathrm{~Hz}, \mathrm{H}-2$ ), 7.68 (dd, $1 \mathrm{H}, J_{9,7}=1.9 \mathrm{~Hz}, J_{9,10}=$ $8.3 \mathrm{~Hz}, \mathrm{H}-9), 7.94(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-3), 8.02\left(\mathrm{~d}, 1 \mathrm{H}, J_{11.12}=9.1 \mathrm{~Hz}, \mathrm{H}-11\right)$, 8.11 (d, $1 \mathrm{H}, \mathrm{H}-10$ ), 8.23 (d, $1 \mathrm{H}, \mathrm{H}-12$ ), 8.24 (d, 1H, H-7); ${ }^{13} \mathrm{C}$ NMR ( $\mathrm{CDCl}_{3}$ ) $\delta 15.21\left(\mathrm{CH}_{3}\right), 20.14,20.55,20.93$ (acetyl), 28.59 (benzylic), $55.68\left(\mathrm{OCH}_{3}\right), 64.40\left(\mathrm{C}-5^{\prime}\right), 73.02,73.66,77.71\left(\mathrm{C}-2^{\prime}, \mathrm{C}-3^{\prime}, \mathrm{C}-4^{\prime}\right)$, 80.59 (C-1'), 104.83 (C-2), 114.81 (C-4), 118.44 (C-12), 118.99 (C-11), 120.41 (C-8), 122.43 (C-3 and quaternary), 124.09, 126.60, 126.98 (C-10), 128.82 (C-7), 132.99, 135.10 (C-9), 145.42 (C-6a), 147.41 (C-5), 154.68 (C-1), 160.35 (C-6), 169.04, 169.54, 171.00 (acetyl $\mathrm{C}=0$ ). Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{O}_{10}$ : C, 66.2; $\mathrm{H}, 5.38$. Found: C , 66.0; H, 5.10 .

Acknowledgment. We thank the American Cancer Society for generous financial support.

Registry No. 1, 116596-78-2; 2, 116596-79-3; 3, 13035-61-5; 4, 114862-65-6; 5, 83-56-7; 6, 116596-80-6; 7, 114862-61-2; 8, 114862-62-3.

## Aryl Exchange via Reversible Friedel-Crafts Reaction in the Synthesis of a Diarylacetic Acid

Ella B. Nadler and Zvi Rappoport*

Department of Organic Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

## Received May 19, 1988

Friedel-Crafts alkylations are reversible processes as judged by transalkylation and reorientation reactions and the formation of the thermodynamically more stable product if the processes take place for sufficient time. ${ }^{1}$

In the course of an attempted preparation of a diarylacetic acid via a Friedel-Crafts type alkylation of an aromatic substrate by an arylglycolic acid, we observed a product which suggests that exchange of an aryl group between the two precursors takes place. We believe that this is due to the reversibility of the Friedel-Crafts reaction after an initial proton transfer. Alkyl transfers are known, ${ }^{1}$ and aryl "replacement" reactions were reported in the $\mathrm{AlCl}_{3}$-catalyzed reaction of few $\beta, \beta$-diarylpropionic acids with aromatic solvents ${ }^{2}$ or in the $\mathrm{AlCl}_{3}$-catalyzed addition of ArH to cinnamic acids, which presumably proceeds via the $\beta, \beta$-diarylpropionic acids. ${ }^{2}$ Since we did not find a precedent for this behavior in our particular system, we report this interesting variant of the reaction here.

Reflux of mesitylglycolic acid (1) ${ }^{3}$ with anisole as the solvent ( 16 -fold excess over 1 ) in the presence of excess anhydrous stannic chloride gave $70 \%$ yield of an acid, which is not the expected anisylmesitylacetic acid (2a) since it showed no mesityl-methyl signals in the NMR. The acid was identified as 2,2-di-p-anisylacetic acid (2b) (eq 1 ).

(1)

Mes $=2,4,6-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2}: A n=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$
In order to see if this results from the large concentration of anisole, the same reaction was conducted in refluxing $\mathrm{CS}_{2}$ with only a slight excess of anisole and with the same or a different order of mixing the reagents. Both $2 a$ and 2 b were formed under these conditions, either in a $1: 1$ ratio when $\mathrm{SnCl}_{4}$ is dripped into the anisole- $\mathrm{CS}_{2}$ solution, or in a 4.8 -fold excess of 2 a when the anisole is dripped into the $\mathrm{SnCl}_{4}-\mathrm{CS}_{2}$ solution (eq 1).
The reaction conditions are those of a Friedel-Crafts reaction where the carbenium ion 3 a generated from 1 with the Lewis acid catlayst $\mathrm{SnCl}_{4}$ electrophilically attacks the activated anisole to give cation 4a. The parallel formation of $2 a$ and $2 b$ and the exclusive formation of $2 b$ with excess

[^0]anisole suggests that the electrophilic attack step is reversible. Whereas simple reversibility, i.e. $4 a \rightarrow 3 a$ is a hidden process and does not affect product formation, when another aromatic ring in 4 a (e.g., mesityl) can serve as the nucleofuge after a proton transfer to it (cf. 4b) this overall step would amount to an aryl group exchange on the arylglycolic acid residue or the cation generated thereof. This is presented in eq 2.


2a
A proton transfer from the protonated anisole moiety to the mesityl group in 4a can be either intra- or intermolecular, in which case cation $4 \mathbf{b}$ is formed. This is followed by expulsion of mesitylene, i.e. $\mathbf{4 b} \rightarrow \mathbf{3 b}$. Anisyl and mesityl have similar base strengths. Their reactivities in aromatic substitution are similar as well, as judged by the $\sigma^{+}$values of $p-\mathrm{MeO}$ and $p-\mathrm{Me}^{4}$ (assuming that $\sigma^{+}{ }_{o-\mathrm{Me}}$ $\sim \sigma^{+}{ }_{p-\mathrm{Me}}$ ), when reactivity reduction by the $o-\mathrm{Me}$ groups due to steric effect is taken into account. It is interesing that mesityl stabilizes a vinyl cation better than anisyl: the solvolytic reactivity of $\mathrm{ArC}(\mathrm{Br})=\mathrm{CH}_{2}$ is 17 -fold higher for $\mathrm{Ar}=$ Mes than for $\mathrm{Ar}=p-\mathrm{An} .{ }^{5}$

The aryl groups play a dual role in this mechanism. They stablize the benzylic positive charge in $\mathbf{3 a}$ and $\mathbf{3 b}$, and their substituents stabilize the positively charged $r$ complexes $4 \mathbf{a}$ and $\mathbf{4 b}$ by electron donation. At the same time, their conjugate acids transfer a proton (i.e. $\mathbf{4 a} \rightleftharpoons \mathbf{4 b}$ ) and are lost as neutral species (i.e., $\mathbf{4 b} \rightarrow \mathbf{3 b}$ ). The delicate balance between these roles and the similar basicities of the two aryl groups probably enables the formation of a reasonable amount of both $4 a$ and $4 b$ in their equilibrium and the observation of the reaction in our case. However, the observed ratios of products under the various conditions cannot be rationalized without knowing the ratedetermining step and how far the reactions are from being under thermodynamic control.

The role of the excess anisole seems to be to increase the rate of formation of $\mathbf{2 b}$ by taking away $\mathbf{3 b}$ from the equilibrium mixture. Corroboration of this speculation requires additional experiments.

It is of interest that this aryl exchange reactin was not observed previously when the aromatic reagent had either identical basicity or smaller basicity than mesitylene. The reaction of mesitylglycolic acid with mesitylene- $\mathrm{Me}-\mathrm{d}_{9}$ (Mes*H), which was studied previously ${ }^{6}$ under $\mathrm{H}_{2} \mathrm{SO}_{4}$ catalysis, resulted only in monolabeled dimesitylacetic acid (Mes* $\mathrm{CH}(\mathrm{Mes}) \mathrm{COOH}$ ), and the reaction of 1 with excess 1-tert-butyl-3,5-dimethylbenzene and $\mathrm{SnCl}_{4}$ gave only

[^1]4-t-Bu-2,6-Me $2_{2} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{CH}(\mathrm{Mes}) \mathrm{COOH} .{ }^{6}$ Apparently, under these specific conditions even the almost identical basicity of the two aryl groups does not ensure the occurrence of exchange. Likewise, the reaction of 1 with excess of $\mathrm{C}_{6} \mathrm{D}_{6}$ and $\mathrm{SnCl}_{4}$ gives only $\mathrm{MesCH}\left(\mathrm{C}_{6} \mathrm{D}_{5}\right) \mathrm{COOH}$ and not $\left(\mathrm{C}_{6} \mathrm{D}_{5}\right)_{2^{-}}$ $\mathrm{CHCOOH},{ }^{7}$ whereas with toluene as a solvent only $\mathrm{MesCH}(p-\mathrm{Tol}) \mathrm{COOH}$ was formed, ${ }^{8}$ indicating again that a suitable combination of effects is required for this exchange to be observed.

We note also that the aryl replacement in $\beta, \beta$-diarylpropionic acids also proceeds only with certain substituents (e.g., $\mathrm{Ph}, p-\mathrm{ClC}_{6} \mathrm{H}_{4}$ ), ${ }^{2}$ which are much less capable of stabilizing a positive charge than anisyl and mesityl.

A detailed knowledge of the mechanism and of the optimal conditions may turn the reaction to a useful method for generating new diarylacetic acids from the appropriate arylglycolic and aromatic precursors. We plan to study this question.

## Experimental Section

Anisylmesitylacetic Acid (2a). (a) To a solution of mesitylglycolic acid ${ }^{3}$ ( $5 \mathrm{~g}, 0.028 \mathrm{~mol}$ ) and freshly distilled anisole ( 3.69 $\mathrm{mL}, 0.034 \mathrm{~mol})$ in $\mathrm{CS}_{2}(25 \mathrm{~mL})$ at $45^{\circ} \mathrm{C}$ was added $\mathrm{SnCl}_{4}(4.62$ $\mathrm{mL}, 0.039 \mathrm{~mol}$ ) dropwise during $30-40 \mathrm{~min}$. The solution turned orange and then dark red. After being refluxed for 8 h , the solution was poured onto ice-water ( 100 mL ), extracted with ether ( $3 \times$ $30 \mathrm{~mL})$, and dried $\left(\mathrm{MgSO}_{4}\right)$, and the ether was evaporated. The TLC showed two spots of equal intensity, and ${ }^{1} \mathrm{H}$ NMR analysis showed the formation of $\mathbf{2 a}$ to 2 b in a $1: 1$ ratio. Chromatography on a silica gel (Merck 230-400 mesh) pressure column using 4:1 petroleum ether ( $40-60^{\circ} \mathrm{C}$ )-ethyl acetate ( $\mathrm{v} / \mathrm{v}$ ) as the eluent gave four fractions: mesitylene ( 0.66 g ), $\mathbf{2 b}(1.14 \mathrm{~g})$, a $4: 1 \mathbf{2 b}: 2 \mathrm{a}$ mixture $(0.84 \mathrm{~g})$, and nearly pure $2 \mathrm{a}(0.88 \mathrm{~g}, 12 \%)$. Recrystallization from MeOH gave pure anisylmesitylacetic acid (2a): mp $177^{\circ} \mathrm{C}$; UV $\lambda_{\max }(\mathrm{EtOH}) 206 \mathrm{~nm}(\epsilon 8600), 222$ (6500), 274 (660); IR $\nu_{\text {max }}$ (Nujol) 2820-2480 (w, sh, COOH), 1710-1690 (m, CO) cm ${ }^{-1}$; NMR ( 200 $\mathrm{MHz})\left(\mathrm{CDCl}_{3}\right) \delta 2.20(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.29(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.77(1 \mathrm{H}$, $\mathrm{s}, \mathrm{OMe}), 5.36(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 6.78,6.83,7.03,7.07\left(4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{BB}^{\prime} \mathrm{q}\right.$, $J=8.8 \mathrm{~Hz}, \mathrm{An}), 6.91\left(2 \mathrm{H}, \mathrm{s}\right.$, Mes-H); MS (EI, $75^{\circ} \mathrm{C}, 68 \mathrm{eV}$ ), $\mathrm{m} / \mathrm{z}$ (relative abundance, assignment) 284 ( $32, \mathrm{M}$ ), 239 (B, M -COOH ), 223 ( $9, \mathrm{M}-\mathrm{CH} 3-\mathrm{H}-\mathrm{COOH}$ ), $209(7, \mathrm{M}-2 \mathrm{Me}-\mathrm{COOH}), 192$ ( $9, \mathrm{M}-\mathrm{MeCOOH}-\mathrm{MeOH}$ ), 165 ( $9, \mathrm{M}-\mathrm{Mes}$ ), $133\left(8, \mathrm{MesCH}_{2}\right.$ ), 119 (10, Mes), $91\left(3, \mathrm{C}_{7} \mathrm{H}_{7}{ }^{+}\right), 77(3, \mathrm{Ph})$. Anal. C, $75.91 ; \mathrm{H}, 6.87$. Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3}$ : C, 76.03; H, 7.09.
(b) To a refluxing mixture of mesitylglycolic acid ( $10 \mathrm{~g}, 0.057$ $\mathrm{mol})$ and $\mathrm{SnCl}_{4}(9.24 \mathrm{~mL}, 0.079 \mathrm{~mol})$ in $\mathrm{CS}_{2}(130 \mathrm{~mL})$ was added dropwise distilled anisole ( $7.38 \mathrm{~mL}, 0.068 \mathrm{~mol}$ ) in $\mathrm{CS}_{2}(40 \mathrm{~mL})$, and the reflux was continued overnight. On workup as above, 9.81 g of a $\mathbf{2 a} / \mathbf{2 b}$ mixture according to the TLC was formed in a $4.8: 1 \mathbf{2 a}: 2 \mathrm{~b}$ ratio (according to the NMR). Chromatography under the conditions as above gave $2 \mathrm{a}(4.13 \mathrm{~g}, 28 \%$ ), which on recrystallization from MeOH gave white crystals of pure $\mathbf{2 b}$ ( 3.57 g, $24 \%$ ) $\mathrm{mp} 176^{\circ} \mathrm{C}$.
2,2-Di-p-anisylacetic Acid (2b). To a solution of mesitylglycolic acid ( $10 \mathrm{~g}, 0.057 \mathrm{~mol}$ ) in distilled anisole ( $100 \mathrm{~mL}, 0.91$ mmol ) at $70^{\circ} \mathrm{C}$ was added anhydrous $\mathrm{SnCl}_{4}(9.16 \mathrm{~mL}, 0.078 \mathrm{~mol})$ dropwise. The solution was heated at $70^{\circ} \mathrm{C}$ for 8 h , poured into water ( 60 mL ), extracted with ether ( $3 \times 50 \mathrm{~mL}$ ), and washed with dilute $\mathrm{HCl}(50 \mathrm{~mL})$. The ethereal solution was extracted with $10 \%$ aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution ( $3 \times 40 \mathrm{~mL}$ ), the extract was acidified with concentrated HCl , and the solid obtained was filtered. The adsorbed anisole was distilled, leaving a white solid $(9.85 \mathrm{~g}, 70 \%), \mathrm{mp} 102^{\circ} \mathrm{C}$. Recrystallization from ethanol gave pure 2,2-di-p-anisylacetic acid: $\mathrm{mp} 109^{\circ} \mathrm{C}$ (lit. ${ }^{9} \mathrm{mp} 110^{\circ} \mathrm{C}$ ); IR (Nujol) 2800-2400 (br, COOH), $1700(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.78(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.94(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 6.83,6.887 .21$, $7.26\left(4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, J=8.8 \mathrm{~Hz}, \mathrm{Ar}\right)$; molecular peak in the mass

[^2]spectrum, $m / z$ 272. Anal. C, $70.32 ; \mathrm{H}, 5.85$. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4}$ C, 70.57; H, 5.92.

Acknowledgment. We thank Dr. Silvio Biali for discussions. This work was supported by The Israel Commission for Basic Research, The Israel Academy for Sciences and Humanities, to which we are grateful.

Registry No. 1, 20797-56-2; 2a, 116437-29-7; 2b, 4541-73-5; anisole, 100-66-3.

# Parameterization of Cyano Group MM2 Constants in Peracetylated Aldononitriles 

Josep Castells, Carlos Jaime,*, $\dagger$ Francisco López-Calahorra,* Nüria Santalō, and Dolores Velasco

Department Quimica Orgànica, Universitat de Barcelona, Marti i Franquès, 1, 08028 Barcelona, Spain, and<br>Department Quimica, Unitat Quimica Orgànica, Universitat Autōnoma de Barcelona, 08193 Bellaterra (Barcelona), Spain

## Received February 19, 1988

Allinger's MM2 program ${ }^{1}$ includes bending and torsional constants related to alkyl cyano groups; however, it does not permit the direct application to combinations of cyano and other functional groups. One of these is an acyloxy group $\alpha$ to the cyano group. This combination is typical in peracetylated aldononitriles, derivatives extensively used in the analysis of sugars. ${ }^{2}$ Accordingly, the bending $\mathrm{C}_{\mathrm{sp}}-\mathrm{C}_{\mathrm{cpp}^{3}}-\mathrm{O}_{\mathrm{sp}}{ }^{3}$ (type 4-1-6) and the torsional constants $\mathrm{C}_{\mathrm{sp}}-\mathrm{C}_{\mathrm{sp}}{ }^{0}-\mathrm{O}_{\mathrm{sp}}{ }^{2}-\mathrm{C}_{\mathrm{sp}}{ }^{2}$ (type 4-1-6-3) and $\mathrm{C}_{\mathrm{sp}}-\mathrm{C}_{\mathrm{sp}}{ }^{5}-\mathrm{O}_{\mathrm{sp}}{ }^{2}$ LP (type $4-1-6-20)^{3}$ are here parameterized; PAAN compounds can be studied with the MM2 approach.

Experimentally determined structural data (bond lengths and angles and dihedral angles) have been reported for molecules 1-13. . $^{4-16}$ Molecules $4-13$ were studied by X-ray diffraction, 1 was studied by electron diffraction, ${ }^{4}$ and 2 and 3 by microwave spectroscopy. ${ }^{5,6}$
In general, good agreement was obtained between the reported experimental structural values and our own calculated values with the MM2(77) program; ${ }^{17}$ however, the MM2 nitrogen(sp)-carbon(sp) bond lengths were appreciably and systematically longer than the experimental values ( $\sigma 0.0260$ ). Readjustment of the reported 4-10 ( $\mathrm{C}_{\mathrm{sp}}-\mathrm{N}_{\mathrm{sp}}$ ) stretching values led to the following parameters: $1_{0}=1.135 \AA$ and $k_{\mathrm{s}}=18.500 \mathrm{mdyn} / \AA$, in a better concordance with the experimental results ( $\sigma 0.0123$ ). Experimental and calculated bond and angles related to the cyano group were in good agreement.

The correctness of torsional constants is confirmed by comparing experimental and calculated conformational energy (enthalpy) differences; in fact, the torsional contribution to the energy may overshadow all other energetic contributions. However, the experimental energy differences between conformers in acyclic molecules are scarce; indeed, experimental data were only available for $17^{18}$ and $21 .{ }^{19}$ The necessary values were obtained by following Allinger's practice ${ }^{20}$ using MO calculations. The present study has been carried throughout within the MNDO approximation. ${ }^{21}$ Our attention was centered on two groups of molecules: nitriles $17-20$ (to evaluate the 4-1-1-1 ( $\mathrm{C}_{\mathrm{sp}}-\mathrm{C}_{\mathrm{sp}}{ }^{5}-\mathrm{C}_{\mathrm{sp}}{ }^{3}-\mathrm{C}_{\mathrm{gp}}{ }^{3}$ ) torsion parameters) and hydroxy nitriles 21-25 (to evaluate the 4-1-1-6 ( $\left.\mathrm{C}_{\mathrm{sp}}-\mathrm{C}_{\mathrm{sp}} \mathrm{p}^{2}-\mathrm{C}_{\mathrm{sp}}{ }^{2}-\mathrm{O}_{\mathrm{sp}}{ }^{3}\right)$ torsion parameters).

[^3]Because of symmetry factors, molecules $17,19,20,23$, and 25 have only two energetically different conformers. The MNDO $\Delta H_{\mathrm{f}}$ 's of these conformers are collected in Table I; they lead directly to the conformational enthalpy differences shown in Table II. A correction factor of 0.84 $\mathrm{kcal} / \mathrm{mol}$ was introduced to get acceptable agreement between experimental and theoretically ${ }^{22}$ evaluated conformational enthalpy differences. The values $\Delta \Delta H_{f}$ ("exp") are the differences to be used in substitution of the experimentally unavailable ones when parameterization is done.

Empirical calculations on molecules 17-25 with the current MM2 values led to anti-gauche enthalpy differences smaller than they should be. The calculation of the standard deviation (root mean square, rms) with current MM2 values for the 4-1-1-1 and 4-1-1-6 torsion parameters gave the unsatisfactory values 0.68 and 0.61 , respectively; consequently, a reparameterization process of 4-1-1-1 and 4-1-1-6 torsion values was undertaken.
Values of $\Delta H_{\mathrm{f}}$ of gauche conformers more negative than those of the anti ones forces either $V_{1}$ or $V_{2}$ to be smaller or negative. Assigning negative values to $V_{1}$ is not convenient because it leads to a simultaneous stabilization for the eclipsed ( $w=0^{\circ}$ ) conformer; consequently, values of $V_{2}$ more negative than the (already negative) current ones were studied. Best results were attained by making $V_{2}=$ -1.1 and readjusting the $V_{3}$ parameter. A larger $V_{3}$ value leads to a smaller $\sigma$ but, simultaneously, to a higher energy for the eclipsed conformer and to an incorrectly high $\mathrm{C}_{\mathrm{sp}}{ }^{3}-\mathrm{C}_{\mathrm{sp}^{3}}$ rotation barrier. The compromise set of values provisionally adopted for the 4-1-1-1 torsional parameters was $V_{1}=0.2, V_{2}=-1.1$ and $V_{3}=0.2$; this leads to a $\sigma$ value of 0.20 .
Hydroxy nitriles 21-25 were used to reparameterize the 4-1-1-6 constants and to refine the 4-1-1-1 constants, which also intervene in the empirical MM2 conformational energy calculations of those molecules. The experimental $\Delta H_{\mathrm{f}}$ differences between the gauche and anti conformers in 17 ( $0.42 \mathrm{kcal} / \mathrm{mol}$ ) and $21(\geq 0.72 \mathrm{kcal} / \mathrm{mol})$ show that $V_{2}$ -

[^4]
[^0]:    (1) (a) Olah, G. A. Friedel-Crafts Chemistry; Wiley: New York, 1972; e.g. pp 36 and 179 . (b) Roberts, R. M.; Khalaf, A. A. Friedel-Crafts Alkylation Chemistry; Marcel Dekker: New York, 1984; Chapter 7, pp 673 and 680. (c) Streitwieser, A., Jr.; Reif, L. J. Am. Chem. Soc. 1964, 86, 1988.
    (2) (a) Fuson, R. C.; Kozacik, A. P.; Eaton, J. T. J. Am. Chem. Soc. 1933, 55, 3799. (b) Dippy, J. F. J.; Young, J. T. J. Chem. Soc. 1952, 1817; 1955, 3919. (c) Koncos, R.; Friedman, B. S. In Friedel-Crafts and Related Reactions, Olah, G. A., Ed.; Interscience: New York, 1963; Vol. II, Chapter XV, pp 324-326. We are indebted to a referee for bringing these references to our attention.
    (3) Riebsomer, J. L.; Irvine, J.; Andrews, R. J. Am. Chem. Soc. 1938, 60, 1015.

[^1]:    (4) Exner, O. In Correlation Analysis in Chemistry; Chapman, N. B., Shorter, J., Eds.; Plenum: New York, 1978; Chapter 10, p 439.
    (5) (a) Grob, C. A.; Cseh, G. Helv. Chim. Acta 1964, 47, 194.' (b) Yates, K.; Perie, J. J. J. Org. Chem. 1974, 39, 1902.
    (6) Biali, S. E.; Rappoport, Z. J. Am. Chem. Soc. 1984, 106, 5641.

[^2]:    (7) Biali, S. E.; Rappoport, Z.; Depke, G.; Eckart, K.; Scshwarz, H. Int. J. Mass Spectrom. Ion Processes 1985, 63, 289.
    (8) Fuson, R. C.; Maynert, G. W.; Tan, R. L.; Trumbull, E. R.; Wassermundt, F. W. J. Am. Chem. Soc. 1957, 79, 1938.
    (9) Brautt, A.; Kerfanto, M. C. R. Hebd. Seances Acad. Sci. 1964, 258, 5465.

[^3]:    ${ }^{\dagger}$ Universitat Autónoma de Barcelona.

[^4]:    (1) (a) Allinger, N. L. J. Am. Chem. Soc. 1977, 99, 8127. (b) Allinger, N. L.; Yuh, Y. H. QCPE 1980, 12, 395.
    (2) Seymour, F. R.; Chen, E. C. M.; Bishop, S. H. Carbohydr. Res 1979, 19.
    (3) MM2 program considers lone pairs of electrons as pseudoatoms.
    (4) Danford, M. D.; Livinston, R. L. J. Am. Chem. Soc. 1955, 77, 2944.
    (5) Lerner, R. G.; Dailey, B. P. J. Chem. Phys. 1957, 26, 678.
    (6) Nugent, J.; Mann, E.; Licte, R. J. Chem. Phys. 1962, 36, 965.
    (7) Viani, R.; Lapasset, J. Acta Crystallogr., Sect. B 1978, 34, 1190
    (8) Roques, R.; Guy, E. Acta Crystallogr., Sect. B 1976, 32, 602.
    (9) Lynton, H.; Siew, Y. Can. J. Chem. 1975, 53, 192.
    (10) Reck, G. Cryst. Struct. Commun. 1982, 11, 1815.
    (11) Stanford, H.; Mckenzie, C. Acta Crystallogr., Sect. B 1974, 30, 421.
    (12) Pêrez Salazsar, A.; Cano, F. H.; Martinez Carrera, S.; Garcia Blanco, S. Acta Crystallogr., Sect. B 1977, 33, 2276.
    (13) Viani, R.; Cossu, M.; Lapasset, J. Acta Crystallogr., Sect. B 1981, 37, 484.
    (14) Cossu, M.; Viani, R.; Lapasset, J. Acta Crystallogr., Sect. B 1981, 37, 481.
    (15) Beagley, B.; Morton, P.; Pritchard, G.; Ramage, P. Acta Crystallogr., Sect. B 1982, 38, 1393.
    (16) Gassman, G.; Saito, K.; Talley, J. J. Am. Chem. Soc. 1980, 102, 7613.
    (17) Some values of molecule 9 have not been taken into account in calculating the standard deviation (root mean square) because they belong to groupings with aromatic C atoms (4-1-2 and 4-1-2-2), which themselves await reparameterization.
    (18) Fujiyama, T, Bull. Chem. Soc. Jpn. 1971, 44, 3317.
    (19) Schneider, M.; Giguère, A. Can. J. Chem. 1969, 47, 4685
    (20) (a) Allinger, N. L.; Hickey, M. J. Tetrahedron 1972, 28, 2157. (b) See ref 62 in Osawa, E.; Müsso, H. Top. Stereochem. 1982, 22, 117 (21) Dewar, M. J. S.; Thiel, W. J. Am. Chem. Soc. 1977, 99, 4899. (b) Dewar, M. J. S.; Thiel, W. J. Am. Chem. Soc. 1977, 99, 4907.
    (22) Unpublished results.

